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In homogeneous and density-stratified inviscid shear flows, the mechanism for 
instability that is most commonly invoked and discussed is Kelvin-Helmholtz 
instability, as it occurs for a simple velocity discontinuity. There is a second 
mechanism, the wave-interaction mechanism, which is much more general, and is the 
subject of this paper. This mechanism depends on two free waves that propagate in 
opposite directions in a stratified shear flow, and which may become stationary relative 
to each other because of the shear. If this occurs, and their relative phase is suitably 
chosen, the velocity field of each wave increases the displacement of the other, and so 
the disturbance grows. 

We show that this mechanism is responsible for instability in a general class of 
symmetric but otherwise arbitrary velocity and density profiles, provided that the 
Richardson number Ri < t in a central region of arbitrarily small thickness. A critical 
layer exists in this central region for the growing disturbance, but its role in the 
instability process is incidental. When Ri > everywhere, the flow is stable because the 
free waves described above are absorbed by the critical layer, and hence are heavily 
damped. The necessary criteria of Rayleigh and Fjortoft for instability in homogeneous 
fluid are seen to provide a suitable geometry for two interacting waves. Some specific 
examples are given, including a succinct explanation of Holmboe waves. 

1. Introduction 
There is now an extensive literature on the nature of instabilities in stratified shear 

flows (see for example Drazin & Reid 19Sl), most of which consists of mathematical 
and numerical studies. Although the mathematics are well-developed, the physical 
mechanism that causes shear instability is not so well understood, in contrast to 
convective instability (for example) where the physical cause is obvious. 

A number of mechanisms have been identified for various special cases. The first is 
Kelvin-Helmholtz instability of a velocity discontinuity, a kinematic self-advective 
process described in detail in Batchelor (1967). The second is the wave interaction 
mechanism, identified for particular cases of waves on two interfaces by Taylor (193 l), 
Goldstein (1931) and Yih (1974). This process has been developed and generalized by 
Cairns (1979) with the introduction of the concept of ‘negative energy waves’ which 
are stable modes whose introduction into the flow causes a decrease in the total energy. 
Instability can result if such a mode resonates with another mode that has positive 
energy, which occurs when the waves have the same speed and wavelength. This can 
be identified by the crossing of dispersion curves for these modes in a frequency- 
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wavenumber diagram. Whether a given wave mode has positive or negative energy 
depends on the frame of reference used, and the important property is the relation 
between two such modes. A survey of this topic is provided by Craik (1985), and 
generalizations using a Hamiltonian formulation have been given by Ostrovskii, 
Rybak & Tsimring (1986). 

A different picture of the mechanism of shear instability has been presented by 
Lindzen in a series of papers with various colleagues, and this work has been 
summarized in Lindzen (1988). In this picture, shear flow instability is seen to be a 
rather complex process, involving over-reflection and the ' Orr mechanism', the latter 
being an advective process that causes transient growth in uniform shear ; instability 
results because this transient disturbance is continually fed by an over-reflected wave. 
Unstable flows are therefore seen to be those that have a geometry that permit an 
over-reflected wave to continually energize the transient advective Orr process. The 
viability of this mechanism is the subject of current debate (e.g. Smyth & Peltier 1989; 
Takehiro & Hayashi 1992). 

For homogeneous and stratified inviscid flows, general results about whether an 
arbitrarily chosen profile is or is not stable are limited to a small number of criteria that 
are necessary for instability. Specifically, these state that for the flow to be unstable we 
must have (e.g. Drazin & Reid 1981): 

(i) the Richardson number Ri = N2/(dU/dz)' less than at some level in the flow 
(the Miles-Howard criterion) ; 

(ii) if N = 0 everywhere, d2U/dz2 changes sign at some level in the flow (Rayleigh's 
criterion) ; 

(iii) again if N = 0, d2U/dz2(U- U(z,)) < 0 at some level, where zi is the level of the 
inflexion point in (ii) (the Fjortoft criterion); U(z,) may in fact be replaced by any other 
number. 

In themselves, these criteria do not provide much insight into the mechanics of the 
instability process. Rather, one would expect that an understanding of the mechanism 
would help to explain their significance, and why they are necessary for instability. 

The purposes of this paper are, first, to point out that the destabilizing wave 
interaction mechanism may be regarded as a purely kinematic advective process, 
paralleling that for Kelvin-Helmholtz instability. In our opinion, this gives more 
insight into the instability process than a picture based on waves with positive and 
negative energies. Secondly, it is shown that the wave interaction mechanism may be 
generalized to a wide class of general stratified shear flows that contain a layer in which 
Ri < a, and that a relatively simple suficient condition for instability may be derived 
for such flows. In particular, we show how this process explains the above 
Miles-Howard, Rayleigh and Fjortoft requirements for instability, and why the flows 
are stable when R, > everywhere. This leads to the hypothesis that almost all 
instabilities of statically stable horizontally uniform steady stratified shear flows may 
be attributed to this advective wave interaction mechanism. Other examples indicate 
that the same applies to rotating systems (Hoskins, McIntyre & Robertson 1985; 
Hayashi & Young 1987; Sakai 1989). Thirdly, some applications of this approach are 
made to the case of Holmboe instability, and to some profiles discussed by Huppert 
(1 973). 

2. Preliminary equations 
We consider a stably stratified inviscid fluid which has velocity and density profiles 

U(z)  and p,(z) respectively in the undisturbed state, where x and z are horizontal and 
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vertical coordinates. The equations which govern small disturbances to this basic state 
are 

where u‘, w’, p‘ and p’ denote the perturbation quantities of velocity, pressure and 
density from the mean values U,  0, p o  and po. Equation (2.4) implies that we may define 
a perturbation stream function $ by 

If we make the Boussinesq approximation for convenience and eliminate all other 
variables in favour of $, we obtain 

where N is the buoyancy frequency, defined by N 2  = - (g /po)  (dp,/dz). As is standard 
practice for instability studies, we look for disturbances in the form of normal modes, 
namely 

$ = &(z) eik(s-ct) 

and obtain the Taylor-Goldstein equation for & 
, (2.7) 

(2.8) 
d2 U 
dz2 

L($) E N(z)2-(U-c)--(U-c)2k2 

For given velocity and density profiles, solutions of this equation give eigenvalues for 
c and eigenfunctions for &. If the former has a complex value, the flow has a growing 
mode and is deemed to be unstable. For any given solution, the vertical displacement 
7 is given by 

w = -+ U- 7, so that 7 = $ / ( U - C ) .  ’ ( i t  :x) 

2.1. Free waves on interfaces 
An abrupt change in density Apo of the mean flow at a particular level constitutes a 
density interface, and similarly an abrupt change in velocity gradient dU/dz may be 
termed a vorticity interface. Both types of interface support waves. We consider a 
situation where two such interfaces coincide at z = 0, but N and d2U/dz2 are otherwise 
zero in an infinite fluid. N 2  and d2U/dz2 then both have delta function behaviour at 
z = 0, and solutions to (2.8) have the form 

$ = e-WI 
with eigenvalues - 

(2.10) 

(2.11) 
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where g’ = gAp,/p,, and AC, the discontinuity in vorticity, is given by A[ = 
(dU/dz)( -) -(dU/dz)( +), which will be taken to be positive or zero here. The system 
is stable, with neutral, propagating waves. If A[ = 0, (2.10) and (2.11) show that there 
are two gravity waves of speed (g’/2k)lI2, advected by the velocity at the interface. If 
instead Ap, = 0, one solution disappears and there is a single vorticity wave which 
propagates at the speed AC/2k. Associated with the wave is a sinusoidal vortex sheet, 
in phase with the displacement of the interface, which provides the mechanism of 
propagation. Positive 7 implies that upper-layer fluid has been replaced by lower-layer 
fluid (and hence by lower-layer vorticity) there, etc. This causes a velocity field which 
is $wavelength out of phase with the displacement, resulting in a neutral wave 
propagating (in this case) to the left. 

3. A simple prototype: the case of two vorticity interfaces 
We next consider a system with two vorticity interfaces at z = &din a homogeneous 

fluid, where the fluid velocity varies linearly between them and is constant (= f U,) for 
IzI > d, as shown in figure 1 (a). The vorticity increments at the interfaces, A< = i- U,/d, 
are equal and opposite. The solution (Rayleigh 1896) is 

, (3.1) 4 = e -klz-d/-i9-e-klz+dI+i9 

(;)’ = (1 -2kd)2-e-4kd 
(2kd)’ , 

where 9 depends on c. If 0 < kd < k, d z 0.64, c is purely imaginary with c = ici (figure 
lb), and the flow is unstable; 9 is then given by 

2kdci/ U,, 
tan29 = - 

1-2kd ’ (3.3) 

and lies in the range 0 < 9 < in. The disturbance is stationary (in this coordinate 
system) but grows with time. As figure 1 (b) shows, the maximum growth rate lies near 
the middle of the range of kd, not far from the ‘resonant’ condition for stationary free 
waves, kd = 0.5. 

The mechanism of the instability is essentially kinematic and is illustrated in figure 
l(a). The motion may be regarded as a pair of waves propagating in opposite 
directions on the vorticity interfaces, each being affected by the velocity field of the 
other. The displacements of each interface imply a sinusoidal vortex sheet perturbation 
as for (2.10) and (2.1 l), and (3.1) shows that the total velocity field is the sum of the 
velocity fields of each interfacial wave as if it acted in isolation. With the stationary 
phase configuration as shown in figure 1 (a), the net velocity field at each interface may 
be expressed as the sum of a component that is in phase with its displacement, plus a 
second component that is out of phase with it by in. The first component acts to 
increase the amplitude of the displacement of the interface by advection, so that the 
disturbance grows with time. The instability has a finite bandwidth 0 < kd < k,d, 
because the second component affects the speed of the interfacial wave, acting to keep 
it stationary relative to the other wave. Because the vertical velocity field of each free 
wave leads its displacement by +-wavelength in its direction of propagation, the two 
waves are able to force each other symmetrically and in sympathy. As figure l(a) 
shows, this means that in the resulting growing disturbances the phase for the vertical 
displacement leans forward with increasing z ,  whereas that for the vertical velocity 
leans backward. 
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FIGURE 1. (a) The instability mechanism for two vorticity interfaces in a homogeneous fluid, with the 
velocity profile as shown on the left. The diagram shows interface displacements, the associated 
vorticity perturbation (circular arrows), and the peaks in vertical velocity (vertical arrows) at the 
interfaces. Note that these are displaced from the positions they would have if they were free waves. 
Waves on each interface are affected by the other in two ways. First, as in this unstable mode, they 
may alter the phase speed, so that the two waves are locked together. This occurs for a finite range 
of k, 0 < k < k,. Secondly, if this locking is achieved, they may amplify the wave by simple advection. 
The position of the vertical arrows between the nodes and the antinodes of the displacements 
indicates that both processes are happening here. (b) Wave speeds (real and imaginary, solid line) and 
growth rates (dashed line), from (3.2). 

If the phase between the two waves shown in figure 1 is altered by an increment of 
n, the resulting disturbance would be damped rather than growing, corresponding to 
the other complex root for c. For kd > k,d, the interaction between the two waves is 
too weak to be able to lock them together: 9 is then pure imaginary, and the solutions 
are essentially two free waves, one on each interface, each weakly affected by the 
presence of the other wave. This interaction becomes weaker as kd increases. As kd+ 
0, the mean flow tends to a vortex sheet, and the situation becomes that of the simplest 
case of Kelvin-Helmholtz instability, where the mechanism based on self-advection of 
a vortex sheet (Batchelor 1967) applies. 

4. Generalization to arbitrary symmetric profiles 
The above mechanism is also valid for a wide class of velocity and density profiles. 

We can demonstrate this by describing the properties of a specific type of general 
stratified shear flow. The development follows a framework outlined by Cairns (1979) 
and Drazin (1989). We consider a system as shown in figure 2, where the flow is 
confined between horizontal rigid boundaries at zl, zz (which may be at infinity), and 
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FIGURE 2 .  Configuration for the general case discussed in $4. 

we may identify three flow regions, as follows. There is an uppermost region I ,  < z < 
z2 within which the flow is stable, in the sense that it fails to satisfy any of the necessary 
criteria for instability in 8 1 (for example, Ri > tl or dzU/dz2 $: 0 if N = 0, at all levels). 
The flow in the lowest region z1 < z < 1, is similarly stable, and these two regions are 
separated by a central region 1, < z < l2 in which N and dU/dz are constant. To 
investigate the stability of such a flow, we look for eigensolutions & of (2.8) that satisfy 
the boundary conditions 

and for which the flow is unstable if the corresponding eigenvalue c is complex. 
For given values of k and c, we may define two solutions &,(z, k,  c) and $z(z, k,  c) of 

(2.8) such that &, satisfies the lower boundary condition, and iZ the upper. 
Specifically, this means 

L($,) = 0 with $,(z,) = 0, 
L($,) = 0 with &,(z,) = 0. 

This determines each of &, and &2, apart from a multiplicative factor. For example, for 
given k and c, one may obtain a representative form for &, by integrating (2.8) from 
z = z1 with some arbitrarily chosen value of d&,(z,)/dz. For either of &1 or GZ to be 
an eigensolution, it must satisfy both boundary conditions, which means that c and k 
must have values such that &1 = constant x sz, or equivalently 

where $’ denotes d$/dz. 
In the central region where the Richardson number is constant, we consider three 

specific situations with Ri having different values or ranges, the first of which is zero. 

Case 1. Ri = 0 in the central region 

&<~,> = 0 = $(z,), (4.1) 

(4.2) 1 

w&,, &J = $; - $; = 0, (4.3) 

Since N = 0 in this region, G1 and &z here have the form 

} (I, < z < 12).  (4.4) 

The functions D, and B, depend on unspecified details of the flow in the lower region 
alone, and similarly for D, and B, for the upper region. However, if z1 and I, are fixed 

G1 = ~ , ( k ,  c) exp (k(z - 1,)) + ~ , ( k ,  c> exp (- k(z - 1,)) 
$2 = B,@, c) exp (k(z - I,>> + Dz(k  c) exp (- k(z - 1,)) 
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and the central region is broadened so that 1, becomes large, the effects of the upper 
region on the lower are removed, and we have 

4-t 00, 

(4.5) 1 

I 

$1 + Bl(k  c) exp (- k(z - I,)) (z > 41, 
D,(k, c) = 0. 

D, is independent of the upper region, and D, = 0 gives the dispersion relation for the 
lower region in isolation. Similarly, if z2 and 1, are fixed and I, --f - 00, we have 

l1-t-C0, 

(4.6) 
$2 + B,@, c> exp (k(z - 4)) ( z  < 41, 
D,(k, c) = 0. 

Hence, when the upper and lower regions become isolated independent waveguides, the 
dispersion relations for each are that D, and D, are zero. For the complete system, 
however, if I), or 4, is to be a solution they must satisfy (4.3), which gives the 
dispersion relation 

(4.7) 
Solutions for c are eigenvalues for the complete system, and complex roots of (4.7) 
imply instability. In the central region I ,  < z < I,, the solution takes the form of the 
sum of two free waves but with c determined by (4.7), as for the prototype case in $ 3 .  

, We next consider flows where the velocity profile is anti-symmetric about a 
particular level (taken as z = 0), and the buoyancy is symmetric, so that 

D, D, = exp (- 241, - 1,)) B, B,. 

U( - 2 )  = - U(Z), N2( -z)  = N2(z). (4.8) 

(4.9) 
and hence D,(k, c) = D,(k, -c), B,(k, c) = B,(k, -c). (4.10) 

If the lower region has a finite number of modes (n say), we may write 

With these relations one may readily show that solutions of (2.8) satisfy 

$(z, k, c> = $( - z, k, - c), 

(4.1 1) 

where cj is the speed of thejth free wave mode. More generally, for one particular 
mode, we may write 

D , ( k  C) = (cj(k) - C) dl(k, c). (4.12) 

(4.7) may then be written in the form 

D, D, = (~ j (k ) ' -  c') d,(k, C )  d,(k, - C )  = e2B1(k, C )  B,(k, - c), (4.13) 

so that (4.14) 

where e = exp( -k(Iz-I1). Suppose next that cj(k) = 0, so that two free wave modes 
are stationary in this reference frame, for this k value. Then if e is sufficiently small, 
(4.14) must have roots c = +ic,, where 

(4.15) 
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and hence the flow must be unstable. It is clear from the nature of this equation that 
instability does not depend on 6 being small, since the growth rate increases with 6, and 
it is shown in the Appendix that if c,(k) = 0, the flow is unstable for e in the range 
0 < 6 < 1. If 6 = 1, this proof does not apply, and the question of instability depends 
on further details. It is also clear that instability does not depend on c,(k) being exactly 
zero. As for the prototype example of $3, in general there will be a finite bandwidth of 
unstable wavenumbers centred (approximately) on this criterion. 

Hence, the essence of this instability process depends on the mutual interaction 
between two otherwise free waves that propagate in opposite directions, and this 
process works in the same way as for the simple example in $3. For these general shear 
flows, the essential characteristic of whether waves are propagating rightward or 
leftward is determined by whether or not the vertical velocity leads the vertical 
displacement in the relevant direction. This property is independent of the frame of 
reference, whereas the energy of the wave is not. 

Case 2. 0 < R, < 

the same result, although the details are more complex. If we define 

in the central region 
For this case we may follow the same procedure as in Case 1 to obtain essentially 

[ = k(z-c/U,), [, = k(1,-c/U,) ( i  = 1,2), (4.16) 

where U, = dU/dz in the central region, then for 1, < z < I, we may write & = ['/'$(a, 
where C$ satisfies 

(4.17) 

The Hankel functions H,?(iS), Hp)(iQ are solutions of (4.17), and these may be used 
to construct solutions corresponding to (4.4), which on the real axis of the [-plane have 
the form 

(4.18) 

where c = c, + ic,. As for Case 1, D,  = 0 gives the dispersion relation for waves in the 
lower region, and D ,  = 0 for the upper region. Substituting the expressions (4.18) into 
(4.3) then gives the dispersion relation 

(4.19) 

If we again restrict consideration to the symmetric profiles (4.8), the solutions satisfy 
(4.9), and D5, B, in (4.18) satisfy (4.10). In the case where a free mode of the upper or 
lower region is stationary, so that c,(k) = 0 in (4.12), then writing c = ic,, we have 

(4.20) 

and the arguments for Case 1 again apply. In particular, the flow must be unstable if 
2k1, is sufficiently large, and this is due to the mutual interaction of two free modes. 
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Case 3.  R, > f in the central region 
Here we know from the Miles-Howard theorem that the flow is stable, and the 

interest centres on the way in which the mechanism of instability of Cases 1 and 2 
breaks down. In this case, from (4.16) and (4.17), the general solution to (2.8) has the 
form 

4 = tl’Y~l I i p ( t )  + A ,  I - i p ( t  11, (4.21) 

where ,u = (R, -f)’”, and A ,  and A ,  are constants. Whereas HF)(i&) and HF)(i&) have 
monotonic near-exponential behaviour for 5 real, I&) are oscillatory, and the shear 
is weak enough to permit wave propagation in the region. If waves propagating on the 
upper and lower regions are to be stationary relative to each other, so that they can 
interact as for Cases 1 and 2, they must have a critical level in the central region, ll < 
z < 1,. A single wave on the upper or lower region that has a critical layer in the central 
region will have energy propagation toward the critical layer, with a decrease in 
amplitude of e-p’ and a phase change of in across it (Booker & Bretherton 1967). Such 
a wave embodies a constant flux of momentum p o r n  toward (or away from, 
depending on sign) the critical layer, and this flux is discontinuous across it, decreasing 
in magnitude by the factor e0‘’. There is no reflection from the critical layer, and for 
this system to be steady, the incident wave must be maintained by some forcing due to, 
for example, flow over sinusoidal topography. In the absence of such forcing, there are 
no neutral wave modes on the upper and lower ‘waveguides’ because the waves 
approaching the critical layer are not reflected. If such a system with two waves of 
equal amplitude on each side of the central region is to be unstable, therefore, the 
waves must be able to force each other across the critical layer at sufficient strength 
to overcome the loss due to critical-layer absorption. The e0’ factor weakens these 
effects, so that they are not sufficient to overcome the progressive disappearance of the 
waves due to critical-layer absorption, and consequently the flow is stable. It should be 
noted that it is still possible for waves on the upper and lower regions to assume a 
configuration where they can force each other in a mutually positive manner as in 
Cases 1 and 2, in spite of the changes in amplitude and phase of each wave across the 
critical level. Hence these changes alone do not preclude instability. Instead, we 
attribute the stability of the flows where R, > f everywhere to the fact that the discrete 
neutral modes do not exist. 

5. A general sufficient criterion for instability 
In the preceding section it is established that, for stratified shear flows where 

N( - z )  = N(z), U( - z )  = - U(z) (equation (4.8)), and there is a central region in which 
Ri < f and is uniform that splits the flow into stable upper and lower waveguides, the 
flow is unstable if c,(k) = 0 for some jth mode of either wave guide. Each of these 
wave guides is defined by extending the central region to infinity, in place of the other 
wave guide. This condition is sufficient for instability and not necessary, and a finite 
bandwidth of unstable wavenumbers is expected around it. This enables a number of 
deductions to be made about whether or not a given profile is likely to be unstable, 
as follows. 

We assume that R, > f for IzI > 1, = 11,1, and consider the upper wave guide alone. 
From the properties of such waveguides (Bell 1974; Ince 1926), for each of them alone 
there is an infinite number of modesj that have phase velocities that lie outside the 
range of fluid speeds for all k, and have limit points at the maximum and minimum 
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fluid velocities, U,,, and Urnin, respectively, in the region where R, > i. For the waves 
propagating leftwards with velocities less than Urnin, c,(k) is a monotonic increasing 
function of k ,  with c,(k) --f Urnin as k+ 00. If Urnin = U(12), then the total flow (with. 
both wave guides) will be unstable if the fastest leftward-propagating mode of the 
upper wave guide (mode 1, say) has speed c,(O) < 0. This guarantees that the above 
criterion for matching mode speeds can be achieved for some k ,  for this mode. Whether 
or not this criterion can be achieved for a given profile may often be assessed on a 
relatively simple basis, or by using hydrostatic layered models. 

It follows that simple, monotonic profiles satisfying (4.8) will generally be unstable, 
unless the wave speeds are severely constrained by such things as horizontal 
boundaries. The cases studied by Taylor (1931), Goldstein (1931) and Yih (1974) are 
three simple examples that meet this criterion. These situations may be stabilized by 
introducing horizontal boundaries above and below the interfaces and close enough to 
them to restrict the wave speeds sufficiently. Also, it is clear that more complex profiles 
that fold back so that < 0 for the upper wave guide will be stable by this 
mechanism, because an unstable mode can only have critical levels where Ri < i. 

6.  Examples 
6.1. One density and one vorticity interface - Holmboe instability 

The prototype configuration for Holmboe instability, as discussed by Holmboe (1962), 
is the velocity profile of figure 1 with a density interface at z = 0. This is the simplest 
model of a thin region of density variation embedded in a broader region of velocity 
variation. As shown by Holmboe, this system is subject to two types of instabilities: 
one stationary (i.e. non-oscillatory), and the other oscillatory, with travelling waves on 
the vorticity interfaces and a standing wave on the density interface. The essence of this 
second type may be seen more readily by considering the simpler system of a single 
vorticity interface and a density interface, as shown in figure 3(a). The interfaces are 
separated by a distance d, and the vorticity interface is advected at velocity Uo relative 
to the density interface. The solution for disturbances in this system is 

(6.1) 

(6.2) 

where c; = g’/2k and c, = Uo/2kd, so that c1 and c,  are speeds of the free waves on the 
two interfaces, and 

(6.3) 

The last term in (6.2) couples the two interfaces together, and the waves are 
independent and freely propagating if this term is negligible. From the previous 
sections, we would expect instability to occur when an upper and a lower wave can be 
stationary relative to each other, and they propagate in opposite directions. Here this 
can only occur between the rightward-propagating wave on the lower interface, and 
the leftward propagating wave on the upper. This suggests that the region of instability 
should be centred on or near the line 

= A e-kIz-dI + B e-kIZI. 

c satisfies the cubic equation 

(c2 - c;) (c - ( U, - cz))  + c: c, e-kd = 0, 

R I A  = ekd(2kd( 1 - c/ U,) - 1) .  

in J-kd  space. Figure 3(b)  shows the computed growth rates, and it is clear that this 
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FIGURE 3. (a) As for figure 1 (a) but for a vorticity and a density interface (at z = 0), as shown 
on the left. (b) As for figure 1 (b). The clashed line denotes (6.4). 

is as expected. Figure 3(a) shows the interfaces for a growing mode in a frame of 
reference moving with the mode, in which the instability mechanism is essentially the 
same as for the previous sections. 

For the 3-interface case treated by Holmboe, the instability diagram in J- kd space 
is shown in figure 4 for comparison. Here the oscillatory instability just described 
applies independently to the upper and lower interface pairs. As for the system of figure 
3, for each J ,  kd, there is at most one unstable mode. The growth rate curves are only 
changed very slightly from those of figure 3(b), except where J is small, and the 
resulting oscillations on the centre interface are standing waves, for these three- 
interface modes. As J decreases, the frequency (kc,) decreases to zero more rapidly than 
in figure 3(b), and there is a region where the unstable mode is stationary (c, = 0). Here 
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FIGURE 4. Growth rates in (J ,  kd)-space, as for figure 3(b), but for the symmetric Holmboe 
velocity profile with the density interface at z = 0. The clashed line denotes (6.4). 

the mechanism is essentially the same as that of 93, and is dependent on the waves on 
the two vorticity interfaces. The density interface (at z = 0) acts to suppress this 
instability, so that the growth rate is less than that of 9 3 (figure 1 b), except where 
J = 0 and they become equal. 

6.2. Huppert's proJiles 
These examples are from Huppert (1973), and are included here in response to a 
challenge from a referee. We discuss the following three cases. 

(4.5) 
(9 U(z) = U, sin xz/d,  N 2  = N i ,  - d < z < d, 

$ = 0  on z = k d ,  . 

so that 

where J = (N ,  d / n  U$. 
J R. = -___ 

' cos2xz/d 

6) U(Z) = U, sin xz/d,  N 2  = N %  cos2 xz /d ,  - d < z < d, 
$ =  0 on z = +d, 

so that Ri = J,  given above, which is constant everywhere. 

(4 .8)  
(iii) U = U,Z/d, N 2  = N:z2/d2,  I z J  < Z ,  

$ = O  at z = + d ,  

so that R, = N i z 2 / U i  = J(nz/d)', where J = (N ,d /xUJ2 .  Here there is always a 
region near z = 0 where Ri < +. 

Each of these cases has an anti-symmetric U and a symmetric N with respect to 
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z = 0, and hence the results of 94 are directly applicable, with the minor proviso that 
when R, < f in the central region near z = 0, it is non-uniform there. There is no reason 
to expect that this makes any qualitative difference to the processes acting if the central 
region is small and U' is approximately uniform within it, and we assume so here. 

For case (i), R, becomes less than $ near z = 0 and adjacent to z = & d  when J < $. 
Hence, Ri(J), (4.20) and the argument in the Appendix yield that there must be 
instability centred on k values that give c, = 0 in a one-sided problem involving only the 
upper or lower wave-guide. The region of instability in (a, J)-space (where a = kd/n) 
for this profile has been computed by Hazel (1972, figure 14). The line on the (a, J)- 
plane where c, = 0 for the one-sided problem (where the profile is (6.5) for z > 0, but 
with U = U,nz/d,  N = 0 for - co < z < 0)  lies within the unstable region as would be 
expected, not far from the line of maximum growth rate for the full profile (6.5). Case 
(ii) is essentially the same. 

For Case (iii), the regions of instability on the (a, J)-plane have been computed by 
Huppert (1973, figure 2), and show complicated structure. These characteristics can be 
understood in terms of resonance between modes obtained from a one-sided problem, 
in which N = 0 is assumed for R, < 0.25. For the full profile (6.8), instability with 
stationary growing modes is found in the range 

(r~-$)~+a' < J <  n 2 + a 2 ,  (6.9) 

where n = 1,2, . . . , and a = kd/n.  For example, when a = 2.5, stationary instability is 
found in the range 6.5 < J < 7.25 for the first mode, and within 8.5 < J < 10.25 for the 
second mode. For the above one-sided problem, stationary solutions (c = 0) are found 
at J = 7.14 and 9.82 for the first and second modes, respectively. These values lie within 
the bands of instability (6.9), and hence we conclude that the stationary unstable modes 
are formed by resonance between modes of the same order. 

In the darkly shaded bands of Huppert's diagram, instability occurs with growing 
disturbances with c, + 0. Numerical examination of the above one-sided problem 
shows that, for a = 2.5, resonance between the first mode of the upper wave guide and 
the second mode of the lower wave guide occurs at J =  8.0, and between the upper 
second and lower third modes at J = 11.4. These values lie within the first and second 
dark instability bands, respectively, implying that this instability is again due to 
resonance but between modes of different order. The situation is similar to the 
Holmboe mode described in 96.1, where resonance with c, + 0 occurs between unequal 
modes. Another example has been given by Sakai (1989, figure 11). 

7. Summary and discussion 
We have described a mechanism for the instability of a simple prototype shear flow 

in 8 3, in what we believe to be the simplest possible terms : if two free wave modes that 
propagate in opposite directions can be stationary relative to each other, the total flow 
can be represented as the sum of each wave, with altered phase and complex wave 
speed. The disturbance grows exponentially because the velocity field of each wave can 
advect the other to increase its displacement. The principal attribute of the shear is that 
it permits oppositely propagating waves to be relatively stationary. Since vorticity and 
gravity waves have the configuration that maximum upward velocity leads maximum 
displacement by $-wavelength, two such stationary waves are able to mutually amplify 
each other by simple advection. This physical picture is shown in $4 to apply to a broad 
class of arbitrary stratified shear flows where the velocity profiles are anti-symmetric. 
On the other hand, two waves that propagate in the same direction cannot force each 
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other in this fashion, although one may grow at the expense of the other. It is also easy 
to see why the familiar ‘necessary’ criteria listed in $1 are in fact necessary. 

This kinematic advection mechanism is an alternative viewpoint to that based on 
energetics described by Cairns (1979) and Craik (1985). These are different ways of 
interpreting and describing the same process. 

The workings of this mechanism help to explain the disjoint regions of instability in 
the J- kd diagrams for some systems with continuous U(z)  and p(z) profiles (Howard 
& Maslowe 1973), which may be understood as applying to wave modes with different 
vertical structure. 

In the unstable flows considered here, a critical layer where c, = 0 exists in the 
central region between the two wave guides. However, this critical layer plays no part 
in the instability process provided Ri < f in the region, and its presence is an incidental 
consequence of the geometry. 

At the fundamental level, there is no need to invoke the ‘ Orr mechanism’ to account 
for the growth of the disturbance. The concept of ‘over-reflection’ is not required 
either, and over-reflection may be interpreted in terms of the same mechanism that 
causes instability here (Baines 1994). 

On the other hand, the critical layer is important in rendering the flow stable when 
Ri > i. In this case, waves may propagate up to the critical layer, where they are 
absorbed into the mean flow (Booker & Bretherton 1967) without reflection. Neutral 
wave modes no longer exist in the upper and lower wave guides. Interaction across the 
critical layer is still possible, but is too weak to compensate for the decay due to critical- 
layer absorption, and this is the reason why the flow is stable. 

The mechanism is different from the familiar mechanism of Kelvin-Helmholtz (KH) 
instability of a vortex sheet (as described in Batchelor 1967), but the latter is a limiting 
form of it. The end result of KH instability is the familiar KH billows, but in many 
cases the products of instability are instead likely to be internal (and vorticity) waves 
in stratified shear flows, quite possibly growing to nonlinear amplitudes. For example, 
numerical studies of the case of Holmboe waves (Smythe, Klaassen & Peltier 1988) 
have shown that some degree of overturning and mixing may occur, but the waves are 
maintained at finite amplitude, with a nonlinear profile, indefinitely. 

The ocean is riddled with internal gravity waves, to the extent that a well-defined 
universal spectrum (the Garrett-Munk spectrum) has been identified (see for example 
Gill 1982). These waves may have a number of sources, but their existence in the deep 
ocean has never been satisfactorily explained. The results obtained here suggest that 
the primary source of these mid-ocean waves may be shear-flow instability. This 
suggestion is not new, but it has been substantially discounted in the past because the 
principal product of this instability has been seen to be KH billows, which are not 
internal waves as such, and collapsing billows do not generate them efficiently. In the 
light of the interaction mechanism, shear-flow instability will readily generate internal 
waves in a wide variety of situations, and the principal limitation would appear to be 
that we require the gradient Richardson number, Ri to be less than f at some level in 
a sheared ocean current profile. 

This framework also applies to barotropic instability in rotating flows, where a p- 
term is included in (2.8). In rotating baroclinic systems the same process (two 
stationary waves advecting each other) has been identified in general terms as the 
mechanism for baroclinic instability (see for example Hoskins et al. (1985), Sakai 
(1989)), with Eady waves being a prime example. Shear instability in other systems 
such as those discussed by Hayashi & Young (1987) and Takehiro & Hayashi (1992) 
may also be interpreted in the same fashion. 
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We emphasize that all of the instabilities described above may be interpreted in terms 
of one mechanism alone, namely the mutual forcing of two stationary, otherwise free, 
waves. This suggests that shear instability in general is due to this single mechanism, 
rather than a family of different processes. 

Humio Mitsudera gratefully acknowledges the support of the Australian Research 
Council and Shell Australia. 

Appendix 

range 0 < E < 1. 
Proof that (4.14) has complex roots c = ic, with ci > 0 when c,(k) = 0, for E in the 

At z = I,, in general we have 

$1 = Dl(k,  C) + Bl(k7 c). (A 1) 
For given k and c, $,(z) is determined apart from an arbitrary factor G, which may be 
identified as the initial gradient at z = zl. Hence we may write 

where 1;1 and d, are determined by k and c. With ci = 0, substituting B, and d, from 
(A 2) into (4.14) gives 

C' = e2c2 - S'(P + cQ), (A 3) 

where 

We look for solutions where c = ic,, in which case P is real and positive, and Q is 
imaginary for all real k.  Writing Q = iQ, we then have 

E'Q [e2@ + 4( 1 - E') E ~ P ] ~ ' '  
Cd = 

2( 1 - €2) 
2 

so that there is a positive value of ci for all 6 in the range 0 < E < 1.  For c = ici, P and 
Q are well-behaved functions. F,(k,c) is the value of @l at z = I,, so that it is always 
finite, and d,(k,c) is the dispersion relation for the lower wave guide (with one root 
factored out), so that its zeros for c are all on the real axis. Hence dl is bounded away 
from zero, and P and Q are finite for all ci. 
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